

SINGLE CHIP RDS DEMODULATOR + FILTER

- HIGH PERFORMANCE, 57KHz BANDPASS FILTER (8th ORDER)
- FILTER ADJUSTMENT FREE AND WITHOUT **EXTERNAL COMPONENTS**
- PURELY DIGITAL RDS DEMODULATION WITHOUT EXTERNAL COMPONENTS
- ARI (SK INDICATION) AND RDS SIGNAL QUALITY OUTPUT
- 4.332MHz CRYSTAL OSCILLATOR (8.664MHz OPTIONAL)
- LOW NOISE MIXED BIPOLAR/CMOS TECH-NOLOGY

DESCRIPTION

The TDA7330B is a RDS demodulator. It recovers the additional inaudible RDS information which is transmitted by FM radio broadcasting stations.

The output data signal (RDDA) and clock signal (RDCL) can be further processed by a suitable RDS decoder (microprocessor).

The device operates in accordance with the EBU (European Broadcasting Union) specifications.

The IC includes a 2nd order antialiasing input fil-

ter, a 57KHz switched capacitor band pass filter, a smoothing filter and cross detector, a bit rate clock recovery circuit, a 57KHz PLL, BI-PHASE PSK decoder, differential decoding circuit, ARI indication and RDS signal quality output.

C3 100nF UCC • FSEL DSCIN 16 18 Ň 18 on∕off **R1** 3321 **∐2**.2 OSCILLATOR UREF 2nd ORDER & DIVIDER 2 MO ╢ C ANTIALIAS 10uF 169K σετουτ FILTER CLOCK C1 27pF 27pF сб **Т** PLL RECOVERY I -11 MPXIN + C5 57KHz PLL 12 279pF + ROCL Bth ORDER 1.1875KHz SC-BANDPASS ÷ FILTER BIPHASE DIFF. 13 + RDDA 14pF DECODER DECODER RA 19 ΤM TEST LOGIC POR 29 RA 3 7 8 17 11 15 14 б C4 GND FILOUT ARI QUAL T3 T4 T2 T57 T1 10nF M92TDA73388-81 November 1999

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	7	V
T _{op}	Operating Temperature Range	-40 to 85	°C
T _{stg}	Storage Temperature	-40 to 150	°C

THERMAL DATA

Symbol	Description	DIP20	SO20	Unit
R _{th j-case}	Thermal Resistance Junction-case Typ.	100	200	°C/W

PIN CONNECTION (Top view)

PIN FUNCTION

Nr.	Name	Description
1	MUXIN	RDS input signal.
2	V _{ref}	Reference voltage
3	COMP	Not inverting comparator input (smoothing filter)
4	FIL OUT	Filter Output
5	GND	Ground
6	T1	Testing output pin (not to be used)
7	Т3	Testing output pin (not to be used)
8	T4	Testing output pin (not to be used)
9	OSC OUT	Oscillator output
10	OSC IN	Oscillator Input
11	T57	Testing output pin: 57KHz clock output
12	RDCL	RDS clock output (1187.5Hz)
13	RDDA	RDS data output
14	QUAL	Output for signal quality indication (High = good)
15	ARI	Output for ARI indication (High when RDS + ARI signals are present)
		(High when only ARI is present)
		(Low when only RDS is present)
		(indefined when no signal is present)
16	V _{CC}	Supply Voltage
17	T2	Testing output pin (not to be used)
18	FSEL	Frequency selector pin: open = 4.332 MHz, closed to V _{CC} = 8.664 MHz
19	ТМ	Test mode pin (open = normal RUN)
		(closed to V_{CC} = Test mode)
20	POR	Reset Input for testing (active high)

57

ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V$, Tamb = 25°C; $R_g = 600\Omega$; fosc = 4.332MHz; $V_{IN} = 20mVrms$ unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
SUPPLY						
V _{CC}	Supply Voltage		4.5	5	5.5	V
ا _S	Supply Current			9		mA
RPOR	POR Pull Down Resistor	pin 20		40		KΩ
PORON	POR Threshold			2.5		V

FILTER(measured an pin 4 FILOUT)

Fc	Center Frequency		56.5	57	57.5	KHz
BW	3dB Bandwidth		2.5	3	3.5	KHz
G	Gain	f = 57KHz	18	20	22	dB
A	Attenuation	$\begin{array}{l} \Delta f = \pm 4 \text{KHz} \\ f = 38 \text{KHz}; \ V_i = 500 \text{mVrms} \\ f = 67 \text{KHz}; \ V_i = 250 \text{mVrms} \end{array}$	18 50 35	22 80 50		dB dB dB
∆Ph	Phase non linearity	A (see note1) B (see note1) C (see note1)		0.5 1 2	5 7.5 10	DEG DEG DEG
Ri	Input Impedance		100	160	200	KΩ
S/N	Signal to Noise Ratio	V _i = 3mVrms	30	40		dB
Vi	Maximum Input Signal Capability	$f = 19KHz; T3 \le -40dB$ (see note2) f = 57KHz (RDS + ARI)			1 50	Vrms mVrms
RL	Load Impedance	Pin 4	100			KΩ

CROSS DETECTOR

	RA	Resistance pin 3-4		15	21	28	KΩ	
ļ								

OSCILLATOR

F _{OSC}	Oscillator Frequency	F_{SEL} = Open (*) F_{SEL} = Closed to V _{CC} (**)		4.332 8.664		MHz MHz
VCLL	Clock Input level LOW (pin 10)				1	V
VCLH	Clock Input Level HIGH (pin 10)		4			V
	Output Amplitude (pin 9)			4.5		V _{PP}

(*) FSEL pin has an internal 40KΩ pull down resistor A 4.332MHz QUARTZ must be used (**) A 8.664MHz QUARTZ must be used.

DEMODULATOR

Δfo	Max Oscillator Deviation	FseL = Open		<u>+</u> 1.2		KHz
S _{RDS}	RDS Detection Sensitivity		1			mVrms
S _{ARI}	ARI Detection Sensitivity		3			mVrms
Tlock	RDS Lockup Time			100		ms
V _{OH}	Output HIGH Voltage	I _L = 0.5mA; pins 12, 13, 14, 15	4			V
V _{OL}	Output LOW Voltage	I _L = 0.5mA; pins 12, 13, 14, 15			1	V
f _{RDS}	Data Rate for RDS	RDCL pin		1187.5		Hz
t _D	RDDA Transition versus RDCL	(see figure 2)		4.3		μsec

Note(1):

The phase non linearity is defined as: $\Delta Ph = |-2 \phi f2 + \phi f1 + \phi f3 |$ where ϕfx is the input-output phase difference at the frequency fx (x = 1,2,3)

57

Measure	f1 (KHz)	f2 (KHz)	f3 (KHz)	Δ Ph max
Α	56.5	57	57.5	<5°
В	56	57	58	<7.5°
С	55.5	57	58.5	<10°

ELECTRICAL CHARACTERISTICS (continued)

Note(2): The 3th harmonic (57KHz) must be less than -40dB in respect to the input signal 19KHz plus gain.

Figure 2: RDS timing diagram

OUTPUT TIMING

The generated 1187.5Hz output clock (RDCL line) is synchronized to the incoming data. According to the internal PLL lock condition this

data change can results on the falling or on the rising clock edge.

Whichever clock edge is used by the decoder (rising or falling edge) the data will remain valid for 416.7 μ sec after the clock transition.

Figure 3: Test Circuit

APPLICATION SUGGESTION

- A good DC decoupling between V_{CC} and GROUND is necessary: a 100nF ceramic capacitor, with low resistance and low inductance at high frequency, directly connected on pin 16 (V_{CC})and 5 (GND) is recommended.
- A small series inductance (100μH) or resistor (27Ω) may be used for supply line filtering.
- The Layout path pin2 C2 pin5 must be as short as possible.
- If the supply line, after the power on has a soft and disturbed (spikes) slope, a capacitor of 100nF, between POR and V_{CC}, is racommended.
- The various testing pins have no sense for the customer.

Figure 4: P.C. board and component layout of fig. 3 (1:1 scale)

Figure 6: Group Delay vs. Frequency

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
E		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
Ι			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

57

DIM.		mm		inch				
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	2.35		2.65	0.093		0.104		
A1	0.1		0.3	0.004		0.012		
В	0.33		0.51	0.013		0.020		
С	0.23		0.32	0.009		0.013		
D	12.6		13	0.496		0.512		
E	7.4		7.6	0.291		0.299		
е		1.27			0.050			
н	10		10.65	0.394		0.419		
h	0.25		0.75	0.010		0.030		
L	0.4		1.27	0.016		0.050		
К		0° (min.)8° (max.)						

OUTLINE AND MECHANICAL DATA **SO20**

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 $\ensuremath{\mathbb C}$ 1999 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

57