

Plugin API

Revision 2022-11-12

1. Creating Your First Plugin

A simple example is much better to understand than tens of boring pages of
theory. Our first plugin will show a window with PI (program identification code)
every time a new PI is detected.

The example as well as the main application is created in Delphi. Please don't
ask us how to create plugins in C++, VB or any other programming
language. We have never tried it. But we are sure that it is as simple as in the
Delphi. For anybody who has some experiences with programming, the
conversion to his favourite programming language should be a piece of cake.
Mr. Google provides many links related to this issue.

Are you ready? So run the Delphi and create a new DLL based project:

File / New / Other / DLL Wizard, OK

The basic DLL template will appear:

Now replace the text in the window with the following:

library myplugin;

uses

 SysUtils,

 Classes,

 Dialogs;

type

 P_RDSGroup=^TRDSGroup;

 TRDSGroup = record

 Year: word;

 Month: byte;

 Day: byte;

 Hour: byte;

 Minute: byte;

 Second: byte;

 Centisecond: byte;

 RFU: word;

 Blk1: integer;

 Blk2: integer;

 Blk3: integer;

 Blk4: integer;

 end;

var

 PI: integer;

 Group: TRDSGroup;

{$R *.res}

procedure RDSGroup(PRDSGroup: P_RDSGroup); stdcall;

begin

Group:=PRDSGroup^;

if (Group.Blk1>=0) then

 begin

 if (PI<>Group.Blk1) then

 begin

 PI:=Group.Blk1;

 ShowMessage('New PI has been detected: '+IntToHex(PI,4));

 end;

 end;

end;

procedure Command(Cmd, Param: PChar); stdcall;

var w: string;

begin

w:=UpperCase(string(Cmd));

if (w='CONFIGURE') then

 ShowMessage('Nothing to configure in this simple plugin.');

if (w='RESETDATA') then PI:=-1;

end;

function PluginName: PChar; stdcall;

begin

Result:='My First Plugin';

end;

Exports

 RDSGroup, Command, PluginName;

begin

PI:=-1;

end.

Save the project using File / Save project as, fill myplugin.dpr as the project file
name.

Compile the project by pressing Ctrl+F9.

Now you should find the myplugin.dll file in the project directory. Copy this dll file
into the RDS Spy plugins directory. Then run the RDS Spy. After tuning a station
the window should appear:

That's all in this chapter. Much easier than in your imaginings, I think. Take
advantage of this. Now it's the time to study the source code and make some
experiments before reading the next chapter.

Please keep on mind:

 The main application calls the RDSGroup procedure in the plugin DLL
each time a new RDS group is received or read from a file. The parameter
of this procedure is a pointer to the actual group. The group structure is
defined by the TRDSGroup type.

 Bad blocks are identified by negative value. These blocks shall be ignored.

 The main application calls additional Command procedure in some specific
events. Parameters of this procedure are pointers to Cmd and Param null-
terminated strings. The Param variable may be undefined for some
commands.

 The plugins use standard calling convention (stdcall), also called WINAPI.

Update of the API specification

In the RDS Spy version 1.08 or later, the RFU word in the TRDSGroup structure
contains following information:

Bits Meaning Value

0 to 1
RDS2 stream the group is coming from.
Original RDS is represented by value of 0.

0 to 3

2 to 7 Reserved for future use 0

8
A value of 1 indicates that error correction was used for
block 2 in the group. That group should be ignored as the
group type may be potentially invalid.

0 or 1

9 to 15 Reserved for future use 0

2. List of Procedures and Functions

There is a set of procedures and functions that can be implemented in your plugin
(procedure and function names are case-sensitive!). All these procedures and
functions are optional.

procedure RDSGroup(PRDSGroup: P_RDSGroup); stdcall;

procedure Command(Cmd, Param: PChar); stdcall;

function PluginName: PChar; stdcall;

function Initialize(hHandle: THandle; DBPointer: PTDB): Longint;

stdcall;

Type definition:

type

 P_RDSGroup=^TRDSGroup;

 TRDSGroup = record

 Year: word;

 Month: byte;

 Day: byte;

 Hour: byte;

 Minute: byte;

 Second: byte;

 Centisecond: byte;

 RFU: word;

 Blk1: integer;

 Blk2: integer;

 Blk3: integer;

 Blk4: integer;

 end;

type

 TRecord = record

 Key: shortstring;

 Value: shortstring;

 end;

type

 TDB = record

 Count: integer;

 Records: array [0..255] of TRecord;

 end;

 PTDB = ^TDB;

Data types:
PChar – pointer to a null-terminated string.
ShortString - 0 to 255 characters long string type. While the length can change
dynamically, its memory is statically allocated 256 bytes; the first byte stores the
length of the string.
Word – unsigned 16-bit.
Integer, LongInt – signed 32-bit.

Procedure RDSGroup

Syntax:
procedure RDSGroup(PRDSGroup: P_RDSGroup); stdcall;

Description:
This procedure is called each time a new RDS group is received or read from a
file. The parameter of this procedure is a pointer to the actual group. The group
structure is defined by the TRDSGroup type. This type is a record of time
information, a word reserved for future use and the blocks 1 to 4, where block 1 is
always the PI. Bad blocks are indicated by its negative value and shall be ignored.
No CRC or offsets are included.

Procedure Command

Syntax:
procedure Command(Cmd, Param: PChar); stdcall;

Description:
The main application calls the Command procedure in some specific events.
Parameters of this procedure are pointers to Cmd and Param null-terminated
strings. The Param variable may be undefined for some commands.

List of commands:

Cmd Meaning / Operation expected

CONFIGURE Show the plugin setup dialog. Param is ignored

RESETDATA Reset all operational data. Param is ignored.

EXIT
Prepare the plugin for application exit. Param is
ignored.

SAVEWORKSPACE
A request to save the plugin settings. Called also on the
application exit.
Param = current workspace file (*.rsw).

TUNE
The Tune button click event.
Param = selected frequency.

OPENWORKSPACE
A request to load the plugin settings. Called also on the
application start.
Param = current workspace file (*.rsw).

MOVEX
The main application window has moved in X direction.
Param = difference between new and old position in
pixels.

MOVEY
The main application window has moved in Y direction.
Param = difference between new and old position in
pixels.

LEFT
TOP
RIGHT
BOTTOM

Describes to the plugin the main application window
border. Called on the application start.
Param = the value in pixels.

SHOW
Set the visibility property to true and bring the window
above others. Param is ignored.

SHOWHIDE
Toggle the plugin form visibility property. Param is
ignored.

MINIMIZE
The user has minimized the main application window.
Param is ignored.

RESTORE
The user has restored the main application window.
Param is ignored.

REQUEST

If Param = DECODERDATA, the user requests a report
create so the plugin should send data (if exist) to the
Decoder Data database using the datxchng.dll
procedure AddValue.

Any command whose implementation is not required shall be ignored.

Function PluginName

Syntax:
function PluginName: PChar; stdcall;

Description:
Returns a pointer to the plugin name. The plugin name is showed to the user in
the main menu.

Function Initialize

Syntax:
function Initialize(hHandle: THandle; DBPointer: PTDB): Longint;

stdcall;

Description:
This function, if implemented, is the first function called in the plugin DLL on the
application start. If the plugin contains a form, it should be created just here. The
function returns the plugin form handle. This value is currently not used and may
be nil as well.

Parameter meaning:
hHandle: the main application window handle.
DBPointer: a pointer to the Decoder Data database that is required when using
some of the datxchng.dll functions.

3. DATXCHNG.DLL

This DLL contains useful functions that can be used in the plugins for simple data
exchange between the plugin and the main application. It also contains a set of
functions for load and save the plugin settings. Use of these functions is optional.

Decoder Data related functions:
procedure AddValue(Key, Value: PChar; DBPointer: PTDB); stdcall;

function ReadValue(Key: PChar; DBPointer: PTDB): PChar; stdcall;

function CountRecords(DBPointer: PTDB): integer; stdcall;

function ReadRecord(Index: integer; DBPointer: PTDB): TPRecord;

stdcall;

procedure ResetValues(DBPointer: PTDB); stdcall;

To imagine what the Decoder Data database means, click on View / Decoder
Data in the main menu.

Load and Save related functions:
procedure SavePChar(Filename, Section, Key, Value: PChar);

stdcall;

procedure SaveInteger(Filename, Section, Key: Pchar; Value:

integer); stdcall;

procedure SaveBoolean(Filename, Section, Key: Pchar; Value:

boolean); stdcall;

function LoadPChar(Filename, Section, Key, DefaultValue: PChar):

PChar; stdcall;

function LoadInteger(Filename, Section, Key: Pchar; DefaultValue:

integer): integer; stdcall;

function LoadBoolean(Filename, Section, Key: Pchar; DefaultValue:

boolean): boolean; stdcall;

The functions are provided without exact description as the use should be clear
enough from the examples.

Can my plugin send commands to other plugins?

Yes, this is currently possible by special use of the datxchng.dll function
AddValue:

AddValue('COMMAND', Cmd, DBPointer);

where Cmd is a PChar type of the command string:
COMMAND
or
COMMAND+#13+Value

Examples (called from your plugin to send the command to all plugins):

AddValue('COMMAND', 'SHOW', DBPointer);
AddValue('COMMAND', 'YOURCOMMAND'+#13+'YOURVALUE', DBPointer);

4. Conclusion

Please download plugin examples from the website.

If you found some function missing or some part of this document is not clear
enough, feel free to contact us or send a post to the online forum provided.

Please report all possible bugs!

Web: http://www.rdsspy.com/
Email: info@rdsspy.com

